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Using the AdS/CFT correspondence, the resulting amplitude determines the behavior of
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cross ratios, in a Lorentzian regime. Finally we show that the phase shift is dominated

by graviton exchange and computes, in the dual CFT, the anomalous dimension of the

double trace primary operators O1∂ · · · ∂O2 of large dimension and spin, corresponding to

the relative motion of the two interacting particles. The results are valid at strong t’Hooft

coupling and are exact in the 1/N expansion.
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1. Introduction

In this work we pursue the program, initiated in [1, 2], of applying eikonal methods in the

context of the AdS/CFT correspondence [3 – 7]. Our main goal is to go beyond the tree

level interactions analyzed in [1, 2] and to derive an eikonal formula for hard scattering in

AdS. We shall work in the limit of zero string length and consider the expansion in the

gravitational coupling G. This perturbative expansion of pure quantum gravity in AdS is

dual to the 1/N expansion of gauge theories with large ’t Hooft coupling λ, since N2G ∼ 1

in units of the AdS radius. In general, this regime of the AdS/CFT correspondence is not

tractable. On the gauge theory side, we are working at strong ’t Hooft coupling. On the

AdS side, one finds the usual UV divergences of the gravitational perturbative expansion.

In this paper, we shall show that, in the particular kinematical regime of 2 → 2 small

angle scattering at high energies, the gravitational interaction in AdS can be resummed

to all orders in G using the eikonal approximation. This amplitude determines the dual
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Figure 1: Classical null trajectories of two incoming particles moving in AdSd+1 with total energy

E and relative angular momentum J . They reach a minimal impact parameter r is given by

tanh (r/2) = J/E.

gauge theory four point function in a particular kinematical regime and it is related to the

anomalous dimensions of double trace primary operators with large dimension and spin.

Although these results include all terms of the 1/N expansion, there are still finite N effects

that are not captured by our computations. This is the case of instanton effects, which

give rise to the usual non-perturbative factor e−O(1/gs) ∼ e−O(N/λ). Therefore we must

have N ≫ λ, corresponding to small string coupling gs ≪ 1.

We start in section 2 by rederiving the standard eikonal approximation to ladder

and cross ladder diagrams in flat space [8], using Feynman rules in position space. This

derivation makes the physical meaning of the eikonal approximation most transparent.

Each particle follows a null geodesic corresponding to its classical trajectory, insensitive to

the presence of the other. The leading effect of the interaction, at large energy, is then just

a phase eI/4 determined by the tree level interaction between the null geodesics x(λ) and

x̄(λ̄) of the incoming particles,

I = (−ig)2
∫ ∞

−∞
dλdλ̄ Π(j)

(

x(λ), x̄(λ̄)
)

, (1.1)

where g is the coupling and Π(j) is the propagator for the exchanged spin j particle con-

tracted with the external momenta. We shall see in section 3 that this intuitive description

generalizes to AdS, resuming therefore ladder and cross ladder Witten diagrams.

In section 4 we shall explore the consequences of the eikonal approximation in AdS for

the CFT four point correlator

Â (p1, · · · ,p4) = 〈O1 (p1)O2 (p2)O1 (p3)O2 (p4)〉 ,

of primary operators O1 and O2. Using the eikonal approximation in AdS, we establish the

behavior of Â in the limit of p1 ∼ p3. The relevant limit is not controlled by the standard

OPE, since the eikonal kinematics is intrinsically Lorentzian. Nonetheless, the amplitude

Â is related to the usual Euclidean correlator A by analytic continuation and can be easily

expressed in terms of the impact parameter representation introduced in [2].

Finally, still in section 4, we use the relation between Â and A to study the conformal

partial wave expansion of the Euclidean correlator A in the dual channel p1 → p2. In
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this channel, the amplitude is dominated, as in flat space, by composite states of the two

incoming particles, which are dual to specific composite primary operators O1∂ · · · ∂O2 of

classical dimension E and spin J . We show that the eikonal approximation to Â controls

the anomalous dimension 2Γ (E, J) of these intermediate two-particle states, in the limit of

large E, J . Heuristically, the basic idea can be summarized in two steps. Firstly, the two

incoming particles approximately follow two null geodesics in AdSd+1 with total energy E

and relative angular momentum J , as described by figure 1. The corresponding (d − 1)-

dimensional impact parameter space is the transverse hyperboloid Hd−1 and the minimal

geodesic distance r between the null geodesics is given by

tanh
(r

2

)

=
J

E
.

Then, the eikonal approximation determines the phase e−2πiΓ due to the exchange of a

particle of spin j and dimension ∆ in AdS. As described above, this phase shift is deter-

mined by the interaction between the two geodesics. We shall see that computing (1.1) in

AdS gives

2Γ(E, J) ≃ − g2

2π
(E2 − J2) j−1 Π⊥ (r) (E ∼ J → ∞) , (1.2)

where g is the coupling in AdS and Π⊥ is the Euclidean scalar propagator of dimension

∆ − 1 in the transverse space Hd−1. Secondly, the phase shift is related to the anomalous

dimension by the following argument. Recall that [6], due to the conformal structure of

AdS, wave functions have discrete allowed frequencies. More precisely, a state of dimension

δ with only positive frequencies will be almost periodic in global time τ , acquiring only

a phase e−2πiδ as τ → τ + 2π. Since the interaction between the two particles occurs

in a global time span of π we conclude that the full dimension of the composite state is

δ = E + 2Γ (E, J).

As in flat space, we deduce that the leading contribution to Γ, for E ∼ J → ∞, is

determined completely by the tree level interaction, so that (1.2) is exact to all orders in

the coupling g. Moreover, in gravitational theories, the leading contribution to Γ comes

from the graviton [9], with j = 2 and ∆ = d. The result (1.2) is then valid to all orders in

the gravitational coupling G = g2/8π. For example, in the particular case of the duality

between strings on AdS5×S5 and four dimensional N = 4 SYM, the anomalous dimension

of the above double trace operators is

2 Γ(E, J) ≃ − 1

4N2

(E − J)4

EJ
(E ∼ J → ∞) ,

for E −J ≪ J so that the impact parameter r is much larger than the S5 radius ℓ = 1 and

the effects of massive KK modes are neglegible.

We conclude in section 5 by briefly describing the extensions of the results of this work

to include string effects, which will appear in a forthcoming publication [10], together with

open problems and directions of future research.
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2. Eikonal approximation in position space

In this section we shall rederive the standard eikonal amplitude for high energy scattering

in Minkowski spacetime from a position space perspective. This will prove useful because

the physical picture here developed will generalize to scattering in AdS. We shall consider

(d+1)-dimensional Minkowski space M
d+1 in close analogy with AdSd+1. At high energies

s = (2ω)2

we can neglect the masses of the external particles and, for simplicity, we shall consider

first an interaction mediated by a scalar field of mass m. In flat space we may choose the

external particle wave functions to be plane waves ψi(x) = e iki·x (i = 1, · · · , 4), so that

the amplitude is a function of the Mandelstam invariants

s = −(k1 + k2)
2 , t = −(k1 + k3)

2 = −q2 ,

We then have

−2k1 · k2 = (2ω)2 , k 2
i = 0 .

The eikonal approximation is valid for s ≫ −t, where the momentum transferred q =

k1 + k3 is approximately orthogonal to the external momenta.

The momenta of the incoming particles naturally decompose spacetime as M
2 ×R

d−1.

Using coordinates {u, v} in M
2 and w in the transverse space R

d−1, a generic point can be

written using the exponential map

x = e vT2+uT1 w = w + uT1 + v T2 , (2.1)

where the vector fields T1 and T2 are defined by

T1 =
k1

2ω
, T2 =

k2

2ω
.

The incoming wave functions are then

ψ1(x) = e−iωv , ψ2(x) = e−iωu .

The coordinate u is an affine parameter along the null geodesics describing the classical

trajectories of particle 1. This set of null geodesics, labeled by v and w, is then the unique

congruence associated with particle 1 trajectories. Since T2 = d
dv is a Killing vector field,

these geodesics have a conserved charge −T2 · k1 = ω. At the level of the wave function

this charge translates into the condition

LT2ψ1 = −iωψ1 .

Notice also that the wave function ψ1 is constant along each geodesic of the null congruence,

x(λ) = y + λk1 ,
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Figure 2: The crossed-ladder graphs describing the T–channel exchange of many soft particles

dominate the scattering amplitude in the eikonal regime.

where k1 = 2ω d
du is the momentum vector field associated to particle 1 trajectories. Hence

Lk1ψ1 = 0 .

Finally, the field equations imply that ψ1 is independent of the transverse space coordinate

w. Similar comments apply to particle 2.

Neglecting terms of order −t/s, the outgoing wave functions for particles 1 and 2

are still independent of the corresponding affine parameter, but depend on the transverse

coordinate w,

ψ3(x) ≃ e iωv+iq·w , ψ4(x) ≃ e iωu−iq·w .

The dependence in transverse space is determined by the transferred momentum q. Phys-

ically, the transverse space is the impact parameter space. In fact, for two null geodesics

associated to the external particles 1 and 2, labeled respectively by {v,w} and {ū, w̄}, the

classical impact parameter is given by the distance |w − w̄|.
The exchange of n scalar particles described by figure 2 gives the following contribution

to the scattering amplitude

An =
(−ig)2n

V

∫

Md+1

dx1 · · · dxndx̄1 · · · dx̄n ψ3(xn)∆(xn − xn−1) · · ·∆(x2 − x1)ψ1(x1)

ψ4(x̄n)∆(x̄n − x̄n−1) · · ·∆(x̄2 − x̄1)ψ2(x̄1)
∑

perm σ

∆m(x1 − x̄σ1) · · ·∆m(xn − x̄σn) ,

where V is the spacetime volume, g is the coupling and where ∆(x) and ∆m(x) are,

respectively, the massless and massive Feynman propagators satisfying

(

¤ − m2
)

∆m(x) = iδ(x) .

The basic idea of the eikonal approximation is to put the horizontal propagators in figure 2

almost on-shell. This is usually done in momentum space. For example, for the propagator

between vertices xj and xj+1, we approximate

−i

(k1 + K)2 − iǫ
≃ −i

2k1 ·K − iǫ
,
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where K is the total momentum transferred up to the vertex at xj . The physical meaning

of this approximation becomes clear in the coordinates (2.1),

∆(xj+1 − xj) ≃ −i

∫

dK

(2π)d+1

e i(k1+K)·(xj+1−xj)

2k1 ·K − iǫ

≃ 1

2ω
Θ(uj+1 − uj) δ(vj+1 − vj) δd−1(wj+1 − wj) . (2.2)

In words, particle 1 can propagate from xj to xj+1 only if xj+1 lies on the future directed

null geodesic that starts at xj and has tangent vector k1. This intuitive result can be

derived directly in position space. In fact, in coordinates (2.1), the propagator satisfies

¤∆(x) =
(

−4∂u∂v + ∂2
w

)

∆(u, v,w) = 2iδ(u)δ(v)δd−1(w) .

Since for particle 1 we have ∂v = −iω, for high energies ¤ ≃ 4iω∂u and (2.2) follows.

The eikonal approximation to the position space propagators greatly simplifies the

scattering amplitude for the exchange of n scalar particles

V An ≃
∫

Md+1

dx1dx̄1

∫ ∞

u1

du2

∫ ∞

u2

du3 · · ·
∫ ∞

un−1

dun

∫ ∞

v̄1

dv̄2

∫ ∞

v̄2

dv̄3 · · ·
∫ ∞

v̄n−1

dv̄n

(4ω)2
(

ig

4ω

)2n

e iq·w e−iq·w̄
∑

perm σ

∆m(x1 − x̄σ1) · · ·∆m(xn − x̄σn) ,

with

xj = w + uj T1 + v T2 , x̄j = w̄ + ūT1 + v̄j T2 .

Furthermore, the sum over permutations can be used to extend the integrals over the affine

parameters of external particle trajectories to the full real line,

V An ≃ (2ω)2

n!

∫ ∞

−∞
dvdū

∫

Rd−1

dwdw̄ e iq·w e−iq·w̄

(

− g2

16ω2

∫ ∞

−∞
dudv̄ ∆m (x − x̄)

)n

,

where

x − x̄ = w +
u − ū

2ω
k1 − w̄ − v − v̄

2ω
k2 .

Summing over n, one obtains (the n = 0 term corresponds to the disconnected graph)

V A ≃ (2ω)2
∫ ∞

−∞
dvdū

∫

Rd−1

dwdw̄ e iq·w e−iq·w̄ e I/4 . (2.3)

The integral I can be interpreted as the interaction between two null geodesics of momen-

tum k1 and k2 describing the classical trajectories of the incoming particles. In fact, using

as integration variables the natural affine parameters λ, λ̄ along the geodesics, one has

I = (−ig)2
∫ ∞

−∞
dλdλ̄ ∆m

(

w + λk1 − w̄ − λ̄k2

)

.

Explicit computation yields the Euclidean propagator ∆⊥ of mass m in the transverse R
d−1

space

I =
−ig2

k1 · k2

∫

Rd−1

dk⊥

(2π)d−1

e ik⊥·(w−w̄)

k2
⊥ + m2

=
2ig2

s
∆⊥(w − w̄) ,
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and we obtain the well known eikonal amplitude

A(s, t = −q2) ≃ 2s

∫

Rd−1

dw e iq·w+ ig2

2s
∆⊥(w) . (2.4)

The generalization of the above method to interactions mediated by a spin j parti-

cle is now straightforward. We only need to change the integral I describing the scalar

interaction between null geodesics. The spin j exchange alters the vertices of the local

interaction, as well as the propagator of the exchanged particles. In general, the vertex

includes j momentum factors with a complicated index structure. However, in the eikonal

regime, the momentum entering the vertices are approximately the incoming momenta

k1,k3. Therefore, the phase I should be replaced by1

I = −g2(−2)j (k1)α1 · · · (k1)αj (k2)β1 · · · (k2)βj

∫ ∞

−∞
dλdλ̄∆

α1···αj β1···βj
m

(

w+λk1−w̄−λ̄k2

)

,

(2.5)

where ∆
α1···αj β1···βj

m is the propagator of the massive spin j field. Recall that the equations

of motion for a spin j field hα1···αj imply that h is symmetric, traceless and transverse

(∂α1 hα1···αj = 0), together with the mass-shell condition ¤ = m2. Therefore, the relevant

part of the propagator at high energies is given by

η(α1β1ηα2β2 · · · ηαjβj) ∆m (x− x̄) + · · · ,

where the indices αi and βi are separately symmetrized with weight 1. The neglected

terms in · · · are trace terms, which vanish since k 2
i = 0, and derivative terms acting on

∆m, which vanish after integration along the two interacting geodesics. Compared to the

scalar case, we have then an extra factor of (−2k1 · k2)
j = sj, so that

I = 2ig2 s j−1 ∆⊥(w − w̄) .

Note that we have normalized the coupling g2 so that the leading behavior of the tree level

amplitude at large s is given by −g2sj/t. In the particular case of j = 2 we then have

g2 = 8πG, where G is the canonically normalized Newton constant.

It is known [11, 12] that the eikonal approximation is problematic for j = 0 exchanges.

In this case, the large incoming momentum can be exchanged by the mediating particle,

interchanging the role of u, v in intermediate parts of the graph. The eikonal approximation

estimates correctly the large s behavior of the amplitude at each order in perturbation

theory, but underestimates the relative coefficients, which do not resum to an exponential.

Nonetheless, this is not problematic, since exactly in the j = 0 case the higher order terms

are suppressed by powers of s−1. For j ≥ 1 the problematic hard exchanges are suppressed

at large energies and the eikonal approximation is valid. On the other hand, for the QED

case where j = 1, there is a different set of graphs involving virtual fermions [12] that

dominate the eikonal soft photons exchange. Therefore, also for j = 1, the validity of the

eikonal approximation is in question. None of these problems arise, though, for the most

relevant case, the gravitational interaction with j = 2.

1The sign (−)j indicates that, for odd j, particles 1 and 2 have opposite charge with respect to the spin

j interaction field. With this convention the interaction is attractive, independently of j.
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3. Eikonal approximation in Anti-de Sitter

Let us now apply the intuitive picture developed in the previous section to the eikonal

approximation in position space to hard scattering in Anti-de Sitter spacetime. Recall that

AdSd+1 space, of dimension d + 1 and radius ℓ = 1, can be defined as a pseudo-sphere in

the embedding space R
2,d given by the set of points2

x ∈ R
2,d , x2 = −1 . (3.1)

In the remainder of this paper, points, vectors and scalar products are taken in the embed-

ding space R
2,d, except when extra care is needed with the AdS global structure or when

we wish to make contact with the dual CFT notation.

Consider the Feynman graph in figure 2, but now in AdS. For simplicity, we consider

the exchange of an AdS scalar field of dimension ∆ and, for external fields, we consider

scalars of dimension ∆1 and ∆2. Then, the graph in figure 2 evaluates to

An = (ig)2n

∫

AdS
dx1 · · · dxndx̄1 · · · dx̄n ψ3(xn)Π∆1(xn,xn−1) · · ·Π∆1(x2,x1)ψ1(x1)

ψ4(x̄n)Π∆2(x̄n, x̄n−1) · · ·Π∆2(x̄2, x̄1)ψ2(x̄1)
∑

perm σ

Π∆(x1, x̄σ1) · · ·Π∆(xn, x̄σn),

(3.2)

where Π∆(x, x̄) stands for the scalar propagator of mass ∆(∆ − d) in AdS, satisfying

[¤AdS − ∆(∆ − d)] Π∆(x, x̄) = iδ(x, x̄) . (3.3)

In general, this amplitude is very hard to compute. However, we expect some drastic

simplifications for specific external wave functions describing highly energetic particles

scattering at fixed impact parameters. In analogy with flat space, we expect the eikonal

approximation to correspond to the collapse of the propagators Π∆1 and Π∆2 into null

geodesics approximating classical trajectories of highly energetic particles.

3.1 Null congruences in AdS and wave functions

A null geodesic in AdS is also a null geodesic in the embedding space

x(λ) = y + λk ,

where y ∈ AdS and the tangent vector k satisfies

k2 = 0 , k · y = 0 .

We will follow the intuitive idea that the wave functions ψ1 and ψ2 correspond to the

initial states of highly energetic particles moving along two intersecting congruences of

null geodesics. As described in the previous section, in flat space there is a one-to-one

2Rigorously, AdS space is the universal covering of this pseudo-sphere. We shall use units such that

ℓ = 1.
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Figure 3: (a) A generic null hypersurface k · y = 0 in conformally compactified AdS. (b) The two

null hypersurfaces k1 · y = 0 and k2 · y = 0. Their intersection is the transverse hyperboloid Hd−1

containing the reference point x0. We shall see in section 4 that the null vectors ki and −ki can

be thought of as points in the AdS conformal boundary.

correspondence between null momenta (up to scaling) and congruences of null geodesics.

On the other hand, in AdS the situation is more complicated. Given a null vector k there

is a natural set of null geodesics y + λk passing through all points y ∈ AdS belonging to

the hypersurface k · y = 0, as shown in figure 3(a). However, to construct a congruence

of null geodesics we need to extend this set to the full AdS space. Contrary to flat space,

in AdS this extension is not unique because the spacetime conformal boundary is timelike.

We will now describe how to construct such a congruence in analogy with the construction

presented for flat space.

We start with two null vectors k1, k2 associated with the incoming particles, as rep-

resented in figure 3(b) and normalized as in flat space

−2k1 · k2 = (2ω)2 .

The transverse space is naturally defined as the intersection of the two null hypersurfaces

associated to k1 and k2. It is the hyperboloid Hd−1 defined by

w ∈ AdS , k1 · w = k2 ·w = 0 .

In order to introduce coordinates in AdSd+1 in analogy with (2.1), we choose an arbitrary

reference point x0 in this transverse space Hd−1. This allows us to define the vector fields

T1(x) =
(k1 · x)x0 − (x0 · x)k1

2ω
, T2(x) =

(k2 · x)x0 − (x0 · x)k2

2ω
,

which, from the embedding space perspective, are respectively the generators of parabolic

Lorentz transformations in the x0 k1 and x0 k2-plane. They therefore generate AdS isome-

tries. We may now introduce coordinates {u, v,w} for x ∈ AdSd+1 as follows

x = e vT2 euT1 w

= w − u
(x0 · w)k1

2ω
− v

(x0 · w)k2

2ω
+ uv

(x0 ·w)x0

2
+ uv2 (x0 · w)k2

8ω
,

(3.4)

– 9 –
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where w ∈ Hd−1. It is important to realize that, contrary to the flat space case, [T1,T2] 6= 0

and therefore the order of the exponential maps in (3.4) is important, as will become clear

below.

As for flat space, the coordinate u is an affine parameter along null geodesics labeled

by v and w, which form the desired congruence for particle 1. In fact, (3.4) can be written

as

x = e vT2 w + u e vT2 T1(w) .

Hence, the geodesics in the null congruence associated to particle 1 are given by

x = y + λk , (3.5)

where

y = e vT2 w = w − v
(x0 · w)k2

2ω
.

The normalization of the momentum k and affine parameter λ of the classical trajectories

is fixed by demanding, as in flat space, that the conserved charge −T2 · k = ω. This gives

λ = u
(x0 ·w)2

2ω
,

k =
2ω

(x0 ·w)2
e vT2 T1(w) =

2ω

(x0 ·w)2
d

du
= − 1

x0 ·w

(

k1 − vω x0 −
v2

4
k2

)

.

Let us we remark that different choices of x0 give different congruences, all containing the

null geodesics w + λ′ k1, which lye on the hypersurface k1 · x = 0 at v = 0. Starting

from this hypersurface, we then constructed a congruence of null geodesics using the AdS

isometry generated by T2.

Contrary to flat space, the curves defined by constant u and w in the coordinate

system (3.4) are not null geodesics (except for the curves on the surface u = 0 which are

null geodesics with affine parameter v). These curves are the integral curves of the Killing

vector field T2 = d
dv . In fact, these curves are not even null, as can be seen from the form

of the AdS metric in these coordinates

ds2 = dw2 − (x0 · w)2dudv − u2

4
(x0 · w)2dv2 , (3.6)

where dw2 is the metric on the hyperboloid Hd−1. To construct the null congruence for

particle 2 we introduce new coordinates {ū, v̄, w̄} for x̄ ∈ AdSd+1 as follows

x̄ = e ūT1 e v̄T2 w̄ .

The two sets of coordinates are related by

ū = u
(

1 − uv

4

)−1

v̄ = v
(

1 − uv

4

)

w̄ = w

– 10 –
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Figure 4: The coordinates {u, v} and {ū, v̄} for the simplest case of AdS2. In general, the wave

function of particle 1 is independent of the coordinate u, while that of particle 2 is independent of

the coordinate v̄.

The congruence associated with particle 2 is then the set of null geodesics

x̄ = ȳ + λ̄ k̄ , (3.7)

with

ȳ = e ūT1 w̄ = w̄ − ū
(x0 · w̄)k1

2ω
,

λ̄ = v̄
(x0 · w̄)2

2ω
,

k̄ =
2ω

(x0 · w̄)2
e ūT1 T2(w̄) =

2ω

(x0 · w̄)2
d

dv̄
= − 1

x0 · w̄

(

k2 − ūω x0 −
ū2

4
k1

)

,

so that the conserved charge −T1 · k̄ = ω. In figure 4 we plot the curves of constant u and

v (left) and of constant ū and v̄ (right) in the simplest case of AdS2.

As in flat space, the wave function describing particle 1 carries energy ω

LT2ψ1 = ∂vψ1 ≃ −iωψ1 .

Therefore we choose

ψ1(x) = e−iωvF1(x) ,

where the function F1 is approximately constant over the length scale 1/ω, more precisely

|∂F1| ≪ ω|F1|. The Klein-Gordon equation for the wave function ψ1 implies

[

4iω

(x0 ·w)2
∂u + ¤AdS − ∆1(∆1 − d)

]

F1(x) = 0 ,
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since, as in flat space, the coordinate v satisfies

¤AdS v = (∇v)2 = 0 .

The above equation can then be solved expanding F1 in powers of 1/ω,

F1(x) = F1(v,w) − (x0 · w)2

4iω

∫

du
[

¤AdS − ∆1(∆1 − d)
]

F1(v,w) + · · ·

Since the eikonal approximation gives only the leading behavior of the scattering amplitude

at large ω, it is enough to consider only the first term F1(x) ≃ F1(v,w) so that, to this

order, we have

Lkψ1 = 0 ,

as expected. We conclude that the function F1 is a smooth transverse modulation indepen-

dent of the affine parameter λ of the null geodesics associated with the classical trajectories

of particle 1. Similar reasoning applied to particle 2 leads to

ψ2(x̄) ≃ e−iωūF2(ū, w̄) .

Finally, since in the eikonal regime the particles are only slightly deviated by the

scattering process, to leading order in 1/ω the outgoing wave functions are also independent

of the corresponding affine parameters,

ψ3(x) ≃ eiωvF3(v,w) , ψ4(x̄) ≃ eiωūF4(ū, w̄) ,

with the same requirement |∂F | ≪ ω|F |.
We have kept the discussion of this section completely coordinate independent. On

the other hand, given the choice of k1 and k2, the embedding space R
2,d naturally splits

into M
2 × M

d, with M
2 spanned by k1 and k2 and with M

d its orthogonal complement.

We may then introduce coordinates x = (x+, x−, xa) where x± are light-cone coordinates

on M
2 and where the xa parametrize M

d. We shall often omit the explicit label a. AdS is

then given by

x2 = −x+x− + x · x = −1 .

In terms of these coordinates we have that

k1 = −2ω (0, 1, 0) , k2 = −2ω (1, 0, 0)

and

x0 = (0, 0, x0) , w = (0, 0,w) , w̄ = (0, 0, w̄) . (3.8)

Then, the vector fields T1 and T2 are simply the parabolic Poincaré translations

T1 =
1

2
x+(x0 · ∂) + (x0 · x) ∂− ,

T2 =
1

2
x−(x0 · ∂) + (x0 · x) ∂+ .

– 12 –
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The action of eαT1 is simple in the Poincaré parametrization x = 1/r (1, r2 + y2, y) and

corresponds to translations y → y + (α/2)x0 in the time direction indicated by x0. This

corresponds to

x− → x− + α x0 · x +
α2

4
x+ ,

x → x +
α

2
x+x0 ,

with x+ fixed. Similar remarks apply to T2 with the roles of x+ and x− interchanged.

3.2 Eikonal amplitude

We are now in position to compute the leading behavior of the amplitude (3.2) for the

exchange of n scalars in AdS at large ω, using the techniques explained in section 2. The

first step is to obtain an approximation for the AdS propagator similar to (2.2). Since for

particle 1 we have ∂v ≃ −iω, we can approximate

¤AdS ≃ 4iω

(x0 · w)2
∂u ,

in equation (3.3) for the propagator of particle 1 between vertices xj and xj+1, obtaining

4iω

(x0 · w)2
∂ujΠ∆1(xj ,xj+1) =

2i

(x0 ·w)2
δ(uj − uj+1) δ(vj − vj+1) δHd−1

(wj,wj+1) .

The solution,

Π∆1(xj ,xj+1) ≃
1

2ω
Θ(uj − uj+1) δ(vj − vj+1) δHd−1

(wj,wj+1) ,

has the natural interpretation of propagation only along the particle classical trajectory

and, in these coordinates, takes almost exactly the same form as the corresponding propa-

gator (2.2) in flat space. With this approximation to the propagator, the amplitude (3.2)

associated with the exchange of n scalar particles simplifies to

An ≃ (2ω)2
∫ ∞

−∞
dvdū

∫

Hd−1

dwdw̄F1(v,w)F3(v,w)F2(ū, w̄)F4(ū, w̄)

∫ ∞

−∞
du1

∫ ∞

u1

du2 · · ·
∫ ∞

un−1

dun

∫ ∞

−∞
dv̄1

∫ ∞

v̄1

dv̄2 · · ·
∫ ∞

v̄n−1

dv̄n

(

ig (x0 · w)(x0 · w̄)

4ω

)2n
∑

perm σ

Π∆(x1, x̄σ1) · · ·Π∆(xn, x̄σn) ,

where

xj = e vT2 eujT1 w , x̄j = e ūT1 e v̄jT2 w̄ .

Notice that the extra powers of (x0 · w)2/2 and (x0 · w̄)2/2 come from the integration

measure in the xj and x̄j coordinates, respectively. As for flat space, the integrals over the

affine parameters can be extended to the real line so that, after summing over n, we obtain

A ≃ (2ω)2
∫ ∞

−∞
dvdū

∫

Hd−1

dwdw̄F1(v,w)F3(v,w)F2(ū, w̄)F4(ū, w̄) e I/4 , (3.9)

– 13 –
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with

I = −g2 (x0 · w)2(x0 · w̄)2

(2ω)2

∫ ∞

−∞
dudv̄ Π∆ (x, x̄) .

This can be rewritten as the tree-level interaction between two classical trajectories of the

incoming particles described by (3.5) and (3.7), which are labeled respectively by y and ȳ,

I = (−ig)2
∫ ∞

−∞
dλdλ̄ Π∆

(

y + λk(y), ȳ + λ̄ k̄(ȳ)
)

.

Hence, the AdS eikonal amplitude just obtained is the direct analogue of the corresponding

flat space amplitude (2.3).

The generalization of the above result to the case of interactions mediated by a min-

imally coupled particle of spin j is straightforward, and we shall only give the relevant

results. At high energies, the only change concerns the propagator Π∆, which now should

be replaced by the propagator of the spin–j particle contracted with the null momenta of

the geodesics

Π
(j)
∆ = (−2)j kα1 · · ·kαj k̄β1 · · · k̄βj

Π
α1,··· ,αj ,β1,··· ,βj

∆ ,

where the indices αi, βj are tangent indices to AdS. This follows immediately from the fact

that, at high energies, covariant derivatives −i∇α in interaction vertices can be replaced

by kα and k̄α for particle one and two, respectively. The spin–j propagator is totally

symmetric and traceless in the indices α1 . . . αj (and similarly in the indices β1 · · · βj), it is

divergenceless and satisfies

[¤ − ∆(∆ − d) + j] Π
α1,··· ,αj ,β1,··· ,βj

∆ (x, x̄) = i g(α1β1gα2β2 · · · gα1β1) δ(x, x̄) + · · · , (3.10)

where the indices αi and βi are separately symmetrized, and where the terms in · · · contain

derivatives of δ(x, x̄) and are not going to be of relevance to the discussion which follows,

since they give subleading contributions at high energies. The eikonal expression (3.9) is

then valid in general, with the phase factor I now replaced by

I = −g2

∫ ∞

−∞
dλdλ̄ Π

(j)
∆

(

y + λk, ȳ + λ̄ k̄
)

.

Note that we have normalized the interaction coupling as in flat space, where the tree level

interaction is given by −g2 sj/t at large s.

3.3 Transverse propagator

Now we compute the integral I. Its last expression shows that it is a Lorentz invariant

local function of y, ȳ,k and k̄. Moreover, it is invariant under

y → y + αk , ȳ → ȳ + ᾱ k̄ ,

and it scales like I → (αᾱ)j−1I when k → αk and k̄ → ᾱ k̄. Therefore, the integral I is

fixed up to an undetermined function G,

I = 2ig2 (−2k · k̄)j−1 G

(

y · ȳ − (k · ȳ) (k̄ · y)

k · k̄

)

= 2ig2 sj−1 G(w · w̄) ,

– 14 –
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with s defined in analogy with flat space

s = −2k · k̄ = (2ω)2
(1 + vū/4)2

(x0 ·w) (x0 · w̄)
. (3.11)

To determine the function G we use equation (3.10), contracting both sides with

(−2)j kα1 · · · kαj k̄β1 · · · k̄βj

and integrating against

∫ ∞

−∞
dudv̄ =

(2ω)2

(x0 ·w)2(x̄0 · w̄)2

∫ ∞

−∞
dλdλ̄ .

Here we discuss the simplest case of j = 0, leaving the general case to appendix A. Consider

then first the integral of the r.h.s. of (3.3). Using the explicit form of the δ-function in the

{u, v,w} coordinate system,

δ(x, x̄) =
2

(x0 · w)2
δHd−1

(w, w̄) δ
(

u − ū
(

1 − ūv̄

4

))

δ

(

v − v̄
(

1 − ūv̄

4

)−1
)

,

we obtain
2i

(1 + vū/4)2(x0 ·w)2
δHd−1

(w, w̄) . (3.12)

Next we consider the l.h.s. of (3.3). Explicitly parametrizing the metric dw2 on Hd−1

in (3.6) as

dw2 =
dχ2

χ2 − 1
+ (χ2 − 1)ds2(Sd−2),

where χ = −x0 ·w, we have that

¤AdSΠ∆ =

[

¤Hd−1
+ 2

χ2 − 1

χ
∂χ

]

Π∆ + ∂u(· · · ) ,

where we do not show the explicit terms of the form ∂u(· · · ) since they will vanish once

integrated along the two geodesics. Integrating in dudv̄ we conclude that (3.12) must be

equated to

− 2i

(1 + vū/4)2

[

¤Hd−1
− ∆(∆ − d) + 2

χ2 − 1

χ
∂χ

]

G(w, w̄)

χχ̄
.

Using the fact that

[

¤Hd−1
, χ−1

]

=
1

χ

(

−2
χ2 − 1

χ
∂χ + (3 − d) − 2

χ2

)

,

we finally deduce that

[

¤Hd−1
+ 1 − d − ∆(∆ − d)

]

G(w · w̄) = −δ(w, w̄) .

In appendix A we show that this last equation is also valid for general spin j. We conclude

that the function G is the scalar Euclidean propagator in the hyperboloid Hd−1 of mass

– 15 –



J
H
E
P
0
9
(
2
0
0
7
)
0
3
7

Figure 5: The null geodesics with constant ū = −4/v are the reflection in the AdS conformal

boundary of the null geodesics with constant v.

squared (∆−1)(∆−1−d+2) and corresponding dimension ∆−1. Denoting this propagator

by Π⊥(w, w̄), the eikonal amplitude can be written as

A ≃ (2ω)2
∫ ∞

−∞
dvdū

∫

Hd−1

dwdw̄F1(v,w)F3(v,w)F2(ū, w̄)F4(ū, w̄) exp

(

ig2

2
sj−1 Π⊥(w, w̄)

)

,

(3.13)

with s given by (3.11).

3.4 Localized wave functions

The eikonal amplitude in AdS has a striking similarity with the standard flat space eikonal

amplitude. However, an important difference is the factor
(

1 + vū
4

)2
in the definition (3.11)

of s, which makes the exponent in the eikonal amplitude (3.13) diverge for vū = −4 and

j = 0. This divergence can be traced back to the colinearity of the tangent vectors k

and k̄ of the null geodesics labeled by {v,w} and {ū, w̄} describing classical trajectories

of particle 1 and 2, respectively. When vū = −4, one null geodesic can be seen as the

reflection of the other on the AdS boundary (see figure 5). Thus, the propagator from a

point on one geodesic to a point in the other, diverges since these points are connected

by a null geodesic. This is the physical meaning of the divergence at vū = −4. Clearly,

we should doubt the accuracy of the eikonal approximation in this case of very strong

interference. To avoid this annoying divergence, from now on we shall localize the external

wave functions of particle 1 and 2 around v = 0 and ū = 0, respectively. More precisely,

we shall choose

ψ1(x) ≃ e−iωvF (v)F1(w) , ψ2(x̄) ≃ e−iωūF (ū)F2(w̄) ,

ψ3(x) ≃ e iωvF ⋆(v)F3(w) , ψ4(x̄) ≃ e iωūF ⋆(ū)F4(w̄) ,
(3.14)
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where the profile F (α) is localized in the region |α| < Λ ≪ 1 and it is normalized as

∫ ∞

−∞
dα |F (α)|2 =

√
2 . (3.15)

On the other hand, the smoothness condition |∂F | ≪ ω|F | requires Λ ≫ 1/ω. The two

conditions,

1/ω ≪ Λ ≪ 1 ,

are compatible for high energy scattering, when the de Broglie wavelength of the external

particles is much shorter than the radius of AdS (ℓ = 1). With this choice of external wave

functions, the amplitude simplifies to

Aeik ≃ 8ω2

∫

Hd−1

dwdw̄F1(w)F3(w)F2(w̄)F4(w̄) exp

(

ig2

2
sj−1 Π⊥(w, w̄)

)

, (3.16)

where now

s =
(2ω)2

(x0 · w) (x0 · w̄)
. (3.17)

4. Relation to the dual CFT

The AdS/CFT correspondence predicts the existence of a dual CFTd living on the boundary

of AdSd+1. In particular, the AdS scattering amplitude we determined in the previous

section is directly related to the CFT four point-function of scalar primary operators. We

shall now explore this connection to find properties of four-point functions in CFTs with

AdS duals.

Firstly, we must introduce some convenient notation [1, 2]. The boundary of AdS can

be thought of as the set of null rays through the origin of the embedding space R
2,d. More

precisely, a point in the boundary of AdS is given by

p ∈ R
2,d , p2 = 0 , p ∼ λp (λ > 0) .

In this language, a CFT correlator of scalar primary operators located at points p1, . . . ,pn

is described by an amplitude

A (p1, . . . ,pn)

invariant under SO (2, d) and therefore only a function of the invariants pi ·pj . Moreover,

since the boundary points pi are defined only up to rescaling, the amplitude A will be

homogeneous in each entry

A (. . . , λpi, . . .) = λ−∆iA (. . . ,pi, . . .) ,

where ∆i is the conformal dimension of the i-th scalar primary operator.

The AdS scattering amplitude considered in the previous section is directly related to

the correlator

A (p1,p2,p3,p4) = 〈O1 (p1)O2 (p2)O1 (p3)O2 (p4)〉CFTd
,
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where the scalar primary operators O1 and O2 have dimensions ∆1 and ∆2, respectively.

The four-point amplitude A is just a function of two cross-ratios z, z̄ which we define,

following [13, 14], in terms of the kinematical invariants as3

zz̄ =
(p1 · p3)(p2 · p4)

(p1 · p2)(p3 · p4)
,

(1 − z) (1 − z̄) =
(p1 · p4)(p2 · p3)

(p1 · p2)(p3 · p4)
.

(4.1)

Then, the four-point amplitude can be written as

A (p1,p2,p3,p4) = K∆1(p1,p3)K∆2(p2,p4)A (z, z̄) ,

where A is a generic function of z, z̄ and K∆(p,p′) is the boundary propagator of conformal

dimension ∆ defined below. With this normalization, the disconnected graph gives A = 1.

By the AdS/CFT correspondence, CFT correlators can be computed using string the-

ory in Anti de-Sitter spacetime. We shall work in the limit of small string length compared

to the radius of AdS, where the supergravity description is valid. In this regime, the above

four-point correlator is given by the sum of all Feynman-Witten diagrams like the one in

figure 2, with bulk to boundary propagators K∆(p,x) as external wave functions,

ψ1(x) = K∆1(p1,x) , ψ2(x) = K∆2(p2,x) ,

ψ3(x) = K∆1(p3,x) , ψ4(x) = K∆2(p4,x) .

More generally, we can prepare any on-shell wave function in the bulk by superposing bulk

to boundary propagators from many boundary points. For example,

ψ1(x) =

∫

Σ
dp1 φ1(p1)K∆1(p1,x) ,

where the boundary integration is done along a specific section Σ of the light-cone, with

metric induced by the embedding space. Choosing a different section corresponds to con-

formal transformations of the boundary. The boundary wave function φ1(p1) must be a

homogeneous function of weight ∆1 − d,

φ1(λp1) = λ∆1−d φ1(p1) ,

so that the integral is invariant under conformal transformations of the boundary. There-

fore, given boundary wave functions φi, such that the corresponding bulk wave functions

ψi are of the eikonal type as defined in the previous section, we have
∫

Σ
dp1 · · · dp4 φ1(p1) · · · φ4(p4)A (p1,p2,p3,p4) ≃ Aeik ,

where Aeik is given by (3.16).

3Throughout the paper, we shall consider barred and unbarred variables as independent, with complex

conjugation denoted by ⋆. In general z̄ = z⋆ when considering the analytic continuation of the CFTd to

Euclidean signature. For Lorentzian signature, either z̄ = z⋆ or both z and z̄ are real. These facts follow

simply from solving the quadratic equations for z and z̄.
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Figure 6: The momenta k1,k2 divide AdS space in Poincaré patches Ln and Rn. The boundary

wave functions φ1 and φ3 (φ2 and φ4) are localized on the boundary of R
−1 and R0 (L

−1 and L0).

4.1 CFT eikonal kinematics

In order to construct the relevant eikonal wave functions, we shall need to analyze more

carefully the global structure of AdS. Consider a point Q, either in AdS or on its boundary.

The future and past light-cones starting from Q divide global AdS and its boundary into

an infinite sequence of regions, which we label by an integer. Given a generic point Q′, we

introduce the integral function n (Q′,Q) which vanishes when Q′ is space-like related to Q

and which increases (decreases) as Q′ moves forward (backward) in global time and crosses

the light cone of Q. Clearly n (Q,Q′) = −n (Q′,Q). In terms of the function n (Q′,Q),

the boundary and the bulk to boundary propagators K∆(p,p′) and K∆(p,x) are given by

K∆(p,p′) =
C∆

|2p · p′|∆ i−2∆|n(p,p′)| , K∆(p,x) =
C∆

|2p · x|∆ i−2∆|n(p,x)| , (4.2)

where4

C∆ =
1

2π
d
2

Γ (∆)

Γ
(

∆ − d
2 + 1

) .

In particular, if n (p,x) = 0,±1, then

K∆(p,x) =
C∆

(−2p · x + iǫ)∆
.

Recall that the momenta k1 and k2 indicate, respectively, the outgoing directions of

particles 1 and 2, whereas −k1 and −k2 indicate the incoming ones. These null vectors

4The normalization C∆ is not the standard one used in the literature [7, 5]. In this paper, the boundary

propagator K∆(p,p′) and the bulk to boundary propagator K∆ (p,x) are taken to be the limit of the bulk to

bulk propagator Π∆(x′,x) as the bulk points approach the boundary. As shown in [15, 16], naive Feynman

graphs in AdS computed with this prescription give correctly normalized CFT correlators, including the

subtle two-point function.
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are identified with boundary points as in figure 6. We therefore expect the boundary wave

functions to be localized around these points. Implicit in the discussion in the previous

sections is the assumption that n (k1,k2) = n (−k1,−k2) = 0, whereas n (k2,−k1) =

n (k1,−k2) = 1. The momentum k1 divides global AdSd+1 space into a set of Poincarè

patches Ln of points x such that n (x,k1) = n, which are separated by the surface x ·k1 =

0, as shown explicitly in figure 6. Similarly, we have the patches Rn of points x with

n (x,k2) = n, separated by the surface x · k2 = 0. A point x, either in AdS or on its

boundary, with x · k1 < 0 (x · k1 > 0) will be within a region Ln with n even (odd), and

similarly for the regions Rn. From our previous construction, we see that the interaction

takes place around the hyperboloid Hd−1 defined by the intersection of the boundary

between R0 and R−1 (x · k2 = 0) and the boundary between L0 and L−1 (x · k1 = 0).

Let us then consider the incoming wave φ1 (p1). In order to achieve the required eikonal

kinematics, we shall localize φ1 on the boundary of R−1, around the point −k1. We shall

show in the next section that, if we choose only positive frequency modes with respect to

the action of time translation in this patch, which is generated by T2, the corresponding

bulk wave function ψ1 will have support only on patches Rn with n ≥ −1. Similarly, we

shall localize φ3 on ∂R0, around the point k1, with negative frequency modes only, so that

ψ3 will have support on Rn for n ≤ 0. The overlap of ψ1 and ψ3 will then be non vanishing

only in regions R−1 and R0, which are those parametrized explicitly by the coordinates

{u, v,w}. In a symmetric way, we shall localize φ2 (φ4) on ∂L−1 (∂L0), around the point

−k2 (k2), with positive (negative) frequency modes with respect to T1. The overlap of ψ2

and ψ4 is then localized in regions L−1 and L0, parametrized by {ū, v̄, w̄}. Summarizing,

the relevant choice of kinematics for the four points pi (i = 1, · · · , 4) is given by

p1 ∼ −k1 ⇒ p1 ∈ ∂R−1 (p1 · k2 > 0) ,

p2 ∼ −k2 ⇒ p3 ∈ ∂R0 (p3 · k2 < 0) ,

p3 ∼ k1 ⇒ p2 ∈ ∂L−1 (p2 · k1 > 0) ,

p4 ∼ k2 ⇒ p4 ∈ ∂L0 (p4 · k1 < 0) ,

(4.3)

so that
n (p1,p2) = n (p3,p4) = 0 ,

n (p4,p1) = n (p3,p2) = 1 .

We shall choose, once and for all, a specific normalization of the pi by rescaling the external

points, so that

2p1 · k2 = −2p3 · k2 = 2p2 · k1 = −2p4 · k1 = (2ω)2 .

It is also convenient to parametrize the pi in terms of Poincaré coordinates. Using the

explicit coordinates on R
2,d ≃ M

2 × M
d introduced in section 3.1, we write

p1 = 2ω
(

p2
1 , 1 , p1

)

, p2 = 2ω
(

1, p2
2 , p2

)

,

p3 = −2ω
(

p2
3 , 1 , p3

)

, p4 = −2ω
(

1 , p2
4 , p4

)

,

(4.4)
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Figure 7: Analytic continuation necessary to obtain Â from the Euclidean amplitude A.

with the Poincaré positions pi ∈ M
d small, i.e. in components |p a

i | ≪ 1.

We shall denote the corresponding CFT amplitude, computed with this kinematics, by

Â (p1, · · · ,p4) = K∆1 (p1,p3) K∆2 (p2,p4) Â (z, z̄) , (4.5)

where the cross ratios are small and satisfy

zz̄ ≃ p2p̄2 , z + z̄ ≃ 2p · p̄ , (4.6)

with

p = p3 − p1 , p̄ = p2 − p4 .

We shall reserve the label A and A for the amplitude computed on the principal Euclidean

sheet, where n (pi,pj) = 0. As we shall discuss in detail in section 4.3, the amplitude

Â (z, z̄) is related to A (z, z̄) by analytic continuation. More precisely, we shall show that

Â (z, z̄) = Aª (z, z̄) , (4.7)

where the right-hand side indicates the function obtained by keeping z̄ fixed and rotating

z counter-clockwise around the branch points 0 and 1, as shown in figure 7.

Let us now discuss the boundary propagators K∆ in (4.5). The only subtle issue

comes from the appropriate phase factors [1]. More precisely, given the choices in (4.3)

and the form of the boundary propagator in (4.2), we have that K∆1 (p1,p3) is given by

C∆1 |2p1 · p3|−∆1 times the following phases

1 p1,p3 spacelike separated

i−2∆1 p3 in the future of p1 with p1 · p3 > 0 (4.8)

i−4∆1 p3 in the future of p1 with p1 · p3 < 0

A similar statement applies to the propagator K∆2 (p2,p4). The amplitude (4.5) is then

given, in terms of p, p̄ by

Â (p, p̄) =
(2ω i)−2∆1C∆1

(p2 + iǫp)
∆1

(2ω i)−2∆2C∆2

(p̄2 − iǫp̄)
∆2

Â (z, z̄) , (4.9)
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where we have explicitly written the two propagators using

ǫp = ǫsign (−x0 · p) ,

which picks the correct branch of the logarithm consistent with the phase prescription

in (4.8). Notice that x0 is any future directed vector in M
d, which we choose to be the

reference point introduced in (3.8) of section 3.

4.2 Boundary wave functions

We shall now describe in detail a particularly convenient choice of boundary wave functions,

consistent with the general description of the previous section, and which correspond to

bulk wave functions of the eikonal type. First recall that in section 3.1, k1 defined a surface

in AdS containing the null geodesics that go from the boundary point −k1 to k1. We have

then used the AdS isometry generated by T2 to build the congruence of null geodesics

associated to particle 1. This isometry is time translation in the Poincaré patch R−1, with

boundary centered at −k1. It is then natural to localize the boundary wave function of O1

along the timelike line

p1(t) = −e tT2 k1 = −k1 + tω x0 +
t2

4
k2 .

In fact, parametrizing p1(t) in Poincaré coordinates as in (4.4), we have that

p1(t) =
t

2
x0 ,

so, as a function of t, we are moving in the future time direction indicated by x0. We

then modulate the boundary function with ω F (t) e−iωt, where the function F is the profile

function introduced in (3.14). The bulk wave function ψ1 is then given by

ψ1(x) = ω

∫

dt F (t) e−iωt C∆1
(

− 2p1(t) · x + iǫ
)∆1

,

where the iǫ prescription is correct for all points x in region R−1. Since F (t) is non-

vanishing only for |t| < Λ, the above description is valid also in part of region R0, as we

shall show shortly. In the coordinate system (3.4), valid in R−1 and R0, we have

−2p1(t) · x = −2ω(t − v)
(

1 +
u

4
(t − v)

)

(x0 ·w) ,

showing that the integrand diverges for t = v and t = v − 4/u. The first divergence

corresponds to the future directed signal from point p1(t), whereas the second divergence

comes from the reflection at the AdS boundary for u > 0 and from the backward signal from

p1(t) for u < 0. The backwards signal is relevant in region R−1, where the iǫ prescription

is valid. For positive ω one may close the t contour avoiding completely the singularity

from the backwards signal, showing that positive frequencies propagate forward in global

time. In region R0, on the other hand, the iǫ prescription is valid up to the reflected signal
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Figure 8: The boundary wave function φ1 is localized along a small timelike segment centered in

−k1. The bulk wave function ψ1 is mainly supported around the region k1 · x = 0 in the future of

the boundary point −k1.

at the second singularity, more precisely for uΛ < |4− vu|. In this part of R0 and in region

R−1, for large ω, the integral is dominated by the divergence at t = v, and we have that

ψ1(x) ≃ ω F (v)

∫

dt e−iωt C∆1
(

− 2ω(t − v)(x0 · w) + iǫ
)∆1

.

It is then clear that, for large ω, the wave function ψ1 has precisely the required form

ψ1(x) ≃ e−iωv F (v)F1(w) ,

with

F1(w) = i−∆1
2π C∆1

Γ(∆1)
(−2x0 ·w)−∆1 .

Thus, the wave function ψ1 is supported mainly around the future directed null geodesics

starting from the point −k1 of the boundary, as depicted in figure 8. Similarly, we choose

the boundary wave function of O2 localized along the timelike line

p2(t) = −e tT1 k2 = −k2 + tω x0 +
t2

4
k1 ,

which means

p2(t) =
t

2
x0 .

The bulk wave function ψ2 has then the required eikonal form in (3.14) with

F2(w̄) = i−∆2
2π C∆2

Γ(∆2)
(−2x0 · w̄)−∆2 .

The boundary wave functions φ3 and φ4 will be the complex conjugates of φ1 and φ2,

but localized along slightly different curves,

p3(t) = e tT2 (k1 + q) , p4(t) = e tT1 (k2 + q̄) .
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In analogy with flat space, the eikonal regime corresponds to q2, q̄2 ≪ ω2. The fact that

p3 and p4 must be null vectors yields the conditions

q2 = −2k1 · q , q̄2 = −2k2 · q̄ .

The parts of q and q̄ that are, respectively, proportional to k1 and k2 are irrelevant since

we stay in the same null rays. This freedom can be used to fix

k2 · q = 0 , k1 · q̄ = 0 .

Furthermore, we shall choose q and q̄ orthogonal to x0. In the explicit coordinates for

M
2 × M

d we have

q = 2ω
(

q2, 0, q
)

, q̄ = 2ω
(

0, q̄2, q̄
)

,

with q · x0 = q̄ · x0 = 0, so that

p3(t) =
t

2
x0 − q , p4(t) =

t

2
x0 − q̄ .

We then have that

p3(t) · x = −p1(t) · x + q ·w +
u

4ω
(x0 · w)q2 ,

p4(t) · x̄ = −p2(t) · x̄ + q̄ · w̄ +
v̄

4ω
(x0 · w̄) q̄2 .

At large ω, the leading contribution to the bulk wave function ψ3 is given by

ψ3(x) = ω

∫

dt F ⋆(t) eiωt C∆1
(

− 2p3(t) · x + iǫ
)∆1

≃ eiωv F ⋆(v)F3(w) ,

where the transverse modulation function F3(w) is

F3(w) = C∆1

∫

dl eil
(

2(x0 · w)l − 2q ·w + iǫ
)−∆1

= i−∆1
2π C∆1

Γ(∆1)
(−2x0 · w)−∆1 exp

(

i
q ·w
x0 ·w

)

.

Similarly, ψ4 has the form in (3.14) with

F4(w̄) = i−∆2
2π C∆2

Γ(∆2)
(−2x0 · w̄)−∆2 exp

(

i
q̄ · w̄
x0 · w̄

)

.

With the specific choice of wave functions just described, the AdS eikonal ampli-

tude (3.16) becomes

Aeik ≃ 2i−2∆1 i−2∆2

(

8π2ω C∆1C∆2

Γ(∆1)Γ(∆2)

)2 ∫

Hd−1

dwdw̄ (−2x0 ·w)−2∆1 (−2x0 · w̄)−2∆2

exp

(

i
q ·w
x0 ·w

+ i
q̄ · w̄
x0 · w̄

+
ig2

2
(2ω)2j−2 Π⊥(w, w̄)

((x0 ·w)(x0 · w̄))j−1

)

.

(4.10)
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Figure 9: Unwrapping the AdS2 global time circle.

By construction, the above expression should approximate, in the limit of large ω, the CFT

correlator Â (p, p̄) in (4.9) integrated against the corresponding boundary wave-functions

φi (pi),

Aeik ≃ ω4

∫

dt1 · · · dt4 F (t1)F (t2)F
⋆(t3)F

⋆(t4) eiω(t3−t1)+iω(t4−t2)Â
(

p(ti), p̄(ti)
)

, (4.11)

with

p(ti) =
t3 − t1

2
x0 − q , p̄(ti) =

t2 − t4
2

x0 + q̄ .

Before deriving the consequences of this result, we must clarify the structure of the four

point correlator Â in (4.11). We shall devote the next three sections to this purpose and

return to equations (4.10) and (4.11) only in section 4.6.

4.3 Analytic continuation

Let us discuss the issue of analytic continuation of the amplitude A (pi), showing in partic-

ular how to derive (4.7). First note that the cross ratios z, z̄ as defined in (4.1) are invariant

under rescalings pi → λipi, with λi arbitrary and, in particular, negative. Moreover, two

different boundary points differing by a 2π translation in AdS global time have the same

embedding representation and therefore also give rise to the same values of z, z̄. On the

other hand, in global AdS, different sets of boundary points pi with the same values of

z, z̄ have, in general, different reduced amplitudes A (z, z̄) related by analytic continuation.

More precisely, the amplitude A is a multi-valued function of z, z̄ with branch points at

z, z̄ = 0, 1,∞, and different sets {pi} with the same cross ratios correspond, in general, to

different sheets. The best way to understand this is to start from the Euclidean reduced

four-point amplitude A (z, z̄) and then Wick rotate to the Lorentzian setting.

We start by choosing a global time τ in AdS. From the embedding space perspective,

global time translations are rotations in a timelike plane. We choose this to be the plane

generated by the normalized timelike vectors x0 and x1, with 2ω x1 = k1+k2 (see figure 9).

A generic boundary point p can then be written as

p = λ
[

cos(τ)x0 + sin(τ)x1 + n
]

,
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Figure 10: Figures (a), (b) and (c) show the curves z(θ) and z̄(θ) starting from the Euclidean

setting at θ = 0, with z(0) = z̄⋆(0). Plot (a) corresponds to the limiting path z(θ) = z̄(θ) where

ti = 0 and q = q̄ = 0. Plots (b) and (c) correspond to general paths. Figure (d) shows the relevant

analytic continuation relating Â to A. Starting from path (b), the curve z(θ), shown in black, is

equivalent to the path shown in gray, which, in turn, is composed of two parts. The continuous

part, which is the complex conjugate of the curve z̄(θ), computes A on the principal sheet. The

dashed part, also shown in figure 7, rotates z counter-clockwise around the singularities at 0 and 1.

Therefore Â = Aª.

where the vector n belongs to the (d−1)-dimensional unit sphere embedded in the space R
d

orthogonal to x0 and x1, and the constant λ > 0 depends on the choice of representative p

for each null ray. We can then consider, for each of the boundary points under consideration,

the standard Wick rotation τ → −iτ parametrized by 0 ≤ θ ≤ 1,

p = λ
[

cos
(

−iτe
iπ
2

θ
)

x0 + sin
(

−iτe
iπ
2

θ
)

x1 + n
]

,

where θ = 0 corresponds to the Euclidean setting and θ = 1 to the Minkowski one. Given

the coordinates τi and ni of the four boundary points pi, the corresponding variables z(θ),

z̄(θ) define two paths in the complex plane parametrized by 0 ≤ θ ≤ 1. The paths z(θ),

z̄(θ) are explicitly obtained by replacing

pi · pj → ni · nj − cos
(

−i(τi − τj)e
iπ
2

θ
)

,

in the expressions (4.1). The Lorentzian amplitude Â is then given by the analytic con-

tinuation of the basic Euclidean amplitude A following the paths z(θ), z̄(θ) from θ = 0 to

θ = 1.

In our particular case, we have

τ1 ≃ −π

2
+ t1 , n1 ≃ 1

2ω
(k2 − k1) ,

τ2 ≃ −π

2
+ t2 , n2 ≃ 1

2ω
(k1 − k2) ,

τ3 ≃ π

2
+ t3 , n3 ≃ 1

2ω

(

k1 − k2 + 2q +
q2

2ω2
k2

)

,

τ4 ≃ π

2
+ t4 , n4 ≃ 1

2ω

(

k2 − k1 + 2q̄ +
q̄2

2ω2
k1

)

,
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in the relevant regime of ti ≪ 1 and q2, q̄2 ≪ ω2. Therefore, the complex paths z(θ), z̄(θ)

will be small deformations of the paths

z(θ) = z̄(θ) = cos2
(

ie
iπ
2

θπ/2
)

obtained in the special case ti = 0 and q = q̄ = 0. This limiting path is plotted in figure 10a.

We also show, in figures 10b and 10c two generic paths, respectively with Lorentzian values

z̄(1) = z⋆(1) and Im z(1) = Im z̄(1) = 0. The equations governing the generic paths are

rather cumbersome and are not important for our present purpose. At this point we notice

that the paths z(θ) in figures 10b and 10c can be continuously deformed, without crossing

any branch point, to the path complex conjugate to z̄(θ), plus a full counter-clockwise turn

around 0 and 1, as shown in figure 10d. Thus, the Lorentzian amplitude Â(z, z̄) is obtained

from the basic Euclidean amplitude A(z, z̄) after transporting z anti-clockwise around 0

and 1 keeping z̄ fixed,

Â(z, z̄) = Aª(z, z̄) .

4.4 Anomalous dimensions as phase shift

As explained in sections 4.1 and 4.2, the AdS eikonal regime probes the Lorentzian ampli-

tude Â for small values of the cross ratios z, z̄. Here we shall relate the behavior of Â in

this regime to the anomalous dimensions of the composite primary operators,5

O1∂µ1 · · · ∂µJ
∂2nO2 ,

of large dimension E = ∆1 +∆2 +J +2n and large spin J . We shall also use the conformal

dimensions h ≥ h̄ ≥ 0 defined by

E = h + h̄ , J = h − h̄ .

Consider the expansion of the Euclidean amplitude A in S–channel conformal partial

waves, corresponding to the OPE at z, z̄ → ∞ (or p1 → p2). Following [2], we shall assume

that the S–channel decomposition of the Euclidean amplitude A at large h, h̄ is dominated

by the O1O2 composites. Denoting their anomalous dimensions by 2Γ(h, h̄), we can write

A(z, z̄) ≃
∑

h≥h̄

(

1 + R(h, h̄)
)

Sh+Γ(h,h̄),h̄+Γ(h,h̄)(z, z̄) , (4.12)

where Sh,h̄ are the partial waves corresponding to the S–channel exchange of a primary field

with conformal dimensions h, h̄. The coefficient R(h, h̄) encodes the three point coupling

between O1, O2 and the exchanged composite primary field. The sum is over the lattice

h, h̄ ∈ ∆1 + ∆2

2
+ N0 ,

∆1 + ∆2

2
≤ h̄ ≤ h .

In [2] we introduced an impact parameter representation Ih,h̄ for the S–channel partial

waves Sh,h̄, which approximates the latter for small z, z̄. Moreover, we showed that in the

5We will use this schematic notation to represent the primary composite operators of spin J and con-

formal dimension E, avoiding the rather cumbersome exact expression.
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regime of small z, z̄ one can replace the sum over S–channel partial waves in (4.12) by an

integral over their impact parameter representation,

A(z, z̄) ≃
∫

dhdh̄
(

1 + R(h, h̄)
)

Ih+Γ(h,h̄),h̄+Γ(h,h̄)(z, z̄) .

Expanding in powers of Γ and dropping the explicit reference to h, h̄, this equation reads

A(z, z̄) ≃
∫

dhdh̄ (1 + R)

(

1 + Γ∂ +
1

2
Γ2∂2 +

1

3!
Γ3∂3 + · · ·

)

Ih,h̄(z, z̄)

≃
∫

dhdh̄

[

1 − (∂Γ − R) + ∂
(

Γ(∂Γ − R)
)

− 1

2
∂2

(

Γ2(∂Γ − R)
)

+ · · ·
]

Ih,h̄(z, z̄) ,

where ∂ denotes ∂h + ∂h̄ and in the second equation we have integrated by parts inside

the integral over conformal weights h, h̄. On one hand, the standard OPE guarantees that

the Euclidean amplitude A is regular for small values of z, z̄. As shown in [2], this implies

that the coefficients of the above S-channel partial wave expansion vanish for large h, h̄.

On the other hand, the coefficients R and the anomalous dimensions Γ are computed in

perturbation theory with a leading contribution at order g2. Therefore, the consecutive

terms in the last expression have increasing leading order in the coupling g2 and can not

cancel among themselves. We then conclude that6

R ≃ ∂Γ ,

to all orders in the coupling g2.

In order to explore the consequences of the results of the previous sections, we must

analytically continue equation (4.12) to find the partial wave expansion of the Lorentzian

amplitude Â = Aª. Using the perturbative form,

A(z, z̄) ≃
∑

(1 + ∂Γ)

(

1 + Γ∂ +
1

2
Γ2∂2 +

1

3!
Γ3∂3 + · · ·

)

Sh,h̄(z, z̄) ,

of equation (4.12), we just need to compute the analytic continuation

[

(∂h + ∂h̄)n Sh,h̄(z, z̄)
]ª

.

This can be easily determined using the OPE expansion

Sh,h̄(z, z̄) = z
∆1+∆2

2
−h z̄

∆1+∆2
2

−h̄
∑

n,n̄≥0

z−nz̄−n̄cn,n̄(h, h̄) + (z ↔ z̄) ,

of the S–channel partial waves around z, z̄ ∼ ∞ (see [2]). The differential operator

∂̃ = z−hz̄−h̄ ∂ zhz̄h̄ = ∂ + ln(zz̄) ,

6More precisely, R−∂Γ has to go to zero, for h, h̄ → ∞, at least as fast as (hh̄)(2−d)/2, which corresponds

to the exchange of the state of lowest dimension allowed by the unitarity bound.
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acting on Sh,h̄ for h, h̄ ∈ (∆1 + ∆2)/2 + N0, is invariant under the analytic continuation ª.

Therefore,

[∂nS]ª =
[(

∂̃ − ln(zz̄)
)n

S
]ª

=
(

∂̃ − ln(e 2πizz̄)
)n

S
= (∂ − 2πi)n S .

The Lorentzian amplitude Â = Aª is then given by

Â(z, z̄) ≃
∑

(1+∂Γ)

(

1+Γ(∂ − 2πi)+
1

2
Γ2(∂ − 2πi)2 +

1

3!
Γ3(∂−2πi)3 + · · ·

)

Sh,h̄(z, z̄) .

Focusing in the small z, z̄ regime we can write

Â(z, z̄) ≃
∫

dhdh̄

(

1 − 2πiΓ +
2πi

2
(2πi + ∂)Γ2 − 2πi

3!
(2πi + ∂)2Γ3 + · · ·

)

Ih,h̄(z, z̄) ,

where we have integrated by parts inside the integral over conformal dimensions h, h̄. In

the large h, h̄ limit we can neglect the derivative ∂ = ∂h + ∂h̄ with respect to the constant

2πi, obtaining

Â(z, z̄) ≃
∫

dhdh̄ e−2πi Γ(h,h̄) Ih,h̄(z, z̄) . (4.13)

Hence, in the impact parameter representation of the reduced Lorentzian amplitude Â, the

anomalous dimensions 2Γ play the role of a phase shift.

4.5 Impact parameter representation

Now we wish to find an explicit form of the impact parameter representation for the

Lorentzian amplitude Â in (4.9). First we recall a basic result derived in [2]. For p, p̄ in

the past Milne wedge −M, the impact parameter partial wave Ih,h̄ admits the integral

representation7 over the future Milne wedge M

Ih,h̄ = N∆1N∆2

(

−p2
)∆1

(

−p̄2
)∆2

∫

M

dx

|x|d−2∆1

dx̄

|x̄|d−2∆2
e−2p·x−2p̄·x̄

4hh̄ δ
(

2x · x̄ + h2 + h̄2
)

δ
(

x2x̄2 − h2h̄2
)

,

where the cross ratios z, z̄ are related to p, p̄ as in (4.6) and the constant N∆ is given by

N∆ =
2π1− d

2

Γ (∆)Γ
(

1 + ∆ − d
2

) =
4π C∆

Γ(∆)2
.

Expression (4.13) for the reduced amplitude becomes then

Â = N∆1N∆2

(

−p2
)∆1

(

−p̄2
)∆2

∫

M

dx

|x|d−2∆1

dx̄

|x̄|d−2∆2
e−2p·x−2p̄·x̄ e−2πi Γ(h,h̄) , (4.14)

7The impact parameter representation derived in this section is valid in general for p = p3 and p̄ = p2,

with p1 = p4 = 0. The general case is then related by a conformal transformation, whose precise form is

rather cumbersome, but reduces to p ≃ p3 − p1 and p̄ ≃ p2 − p4 for the case of interest |pa
i | ≪ 1.
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where Γ(h, h̄) depends on x, x̄ through

h2h̄2 ≃ x2 x̄2 , h2 + h̄2 ≃ −2x · x̄ . (4.15)

The fact that Â is uniquely a function of the cross-ratios z, z̄, translates into the fact that

the phase shift Γ depends only on x2 x̄2 and −2x · x̄.

To write the impact parameter representation for the full Lorentzian amplitude Â,

consider first the boundary propagators in (4.9). For p, p̄ in the past Milne wedge −M we

have

(

p2 + iǫp

)−∆1 = i2∆1
(

−p2
)−∆1 ,

(

p̄2 − iǫp̄

)−∆2 = i−2∆2
(

−p̄2
)−∆2 ,

where we recall that ǫp = ǫsign (−x0 · p) with x0 ∈ M. Rotating the radial part of the x, x̄

integrals over the Milne wedges in (4.14), so that x → ix and x̄ → −ix̄, (4.9) becomes

Â (p, p̄) ≃ (2ω i)−2∆1−2∆2C∆1C∆2N∆1N∆2

∫

M

dx

|x|d−2∆1

dx̄

|x̄|d−2∆2
e2ip·x−2ip̄·x̄ e−2πi Γ(h,h̄) .

(4.16)

Although this representation was derived assuming p, p̄ in the past Milne wedge we claim it

is valid for generic p, p̄ ∈ M
d. In fact, for the Γ = 0 non-interacting amplitude, we recover

the boundary propagators from the Fourier transform (which we recall in some detail in

appendix B)

N∆

∫

M

dx

|x|d−2∆
e±2ip·x =

1

(p2 ± iǫp)
∆

. (4.17)

4.6 Anomalous dimensions of double trace operators

We are now in position to use the AdS/CFT prediction given by equations (4.10) and (4.11)

to determine the phase shift in the impact parameter representation (4.16) and therefore to

compute the anomalous dimension of double trace primary operators. First replace (4.16)

in (4.11)

Aeik ≃ ω4 (2ω i)−2∆1−2∆2 C∆1C∆2N∆1N∆2
∫

dt1 · · · dt4 F (t1) F (t2) F ⋆ (t3) F ⋆ (t4) eiω(t3−t1)+iω(t4−t2)

∫

M

dx

|x|d−2∆1

dx̄

|x̄|d−2∆2
ei(t3−t1)x0·x+i(t4−t2)x0·x̄−2iq·x−2iq̄·x̄ e−2πi Γ(h,h̄) .

At high ω, we have t1 ∼ t3 and t2 ∼ t4. Hence, the integrals over the sums
1
2

∫

d (t1 + t3) F (t1) F ⋆ (t3) and 1
2

∫

d (t2 + t4)F (t2) F ⋆ (t4) give an overall factor of 2 from

the normalization (3.15). We are then left with the integrals over the differences, which

give

(2π)2 δ (x0 · x + ω) δ (x0 · x̄ + ω) .

It is easy to see that the integral in x in the future Milne wedge M at fixed time component

x0 · x is equivalent to the integral over points w in the hyperboloid Hd−1, with the change
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of coordinates

x = − ω

x0 · w
w ,

∫

M
dx δ (x0 · x + ω) = 2d ωd−1

∫

Hd−1

dw

(−2x0 · w)d
.

We then get

Aeik ≃ 2 (2πω)2 i−2∆1−2∆2C∆1C∆2N∆1N∆2 (4.18)
∫

Hd−1

dw

(−2x0 · w)2∆1

dw̄

(−2x0 · w̄)2∆2
exp

(

2iω
q · w
x0 · w

+ 2iω
q̄ · w̄
x0 · w̄

− 2πi Γ(h, h̄)

)

,

where Γ(h, h̄) depends on w, w̄ through

4hh̄ =
(2ω)2

(x0 · w) (x0 · w̄)
,

h̄

h
+

h

h̄
= −2w · w̄ .

We conclude that a double trace primary operator with large h, h̄ can be described in AdS

by two particles approximately following two null geodesics as in figure 1, with impact

parameter r = log(h/h̄) and momenta k and k̄ satisfying s = −2k · k̄ = 4hh̄.

Finally, reverting equation (4.18) to the embedding space notation, by replacing

w, w̄, x0, 2ωq, 2ωq̄ with w, w̄,x0, q, q̄, we recover (4.10), with a prediction for the large

h, h̄ behavior of the anomalous dimensions due to the AdS exchange of a spin j particle of

dimension ∆,

2Γ
(

h, h̄
)

≃ − g2

2π

(

4hh̄
)j−1

Π⊥

(

h/h̄
)

.

The transverse propagator Π⊥ is the Euclidean scalar propagator on Hd−1 with dimension

∆ − 1. Its explicit form in terms of the hypergeometric function is

Π⊥(h, h̄) =
1

2π
d
2
−1

Γ (∆ − 1)

Γ
(

∆ − d
2 + 1

)

(

(

h − h̄
)2

hh̄

)1−∆

F

(

∆ − 1,
2∆ − d + 1

2
, 2∆ − d + 1, − 4hh̄

(

h − h̄
)2

)

.

In particular, in dimensions d = 2 and d = 4 the above expression simplifies to

Π⊥(h, h̄) =
1

2 (∆ − 1)

(

h

h̄

)1−∆

(d = 2) ,

=
1

2π

h2

h2 − h̄2

(

h

h̄

)1−∆

(d = 4) .

The anomalous dimensions just obtained are exactly the same8 we obtained in [2],

where we only considered tree level interactions based on a shock wave computation in

AdS [1]. In other words, the loop corrections to the anomalous dimensions of primary

8In [1, 2] a different convention for the coupling constant g2
here = 4 3−j 2π Gthere was used.
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operators with large h, h̄ are subleading with respect to the tree level contribution. This

is reminiscent of the flat space statement that the loop corrections to the phase shift of

large spin partial waves are subleading with respect to the tree level contribution. We must

therefore retract the conjecture we put forward in [2], which included contributions from

all orders in perturbation theory to the anomalous dimensions in the large h, h̄ limit.

We emphasize that, for large h, h̄, the anomalous dimensions are dominated by the

AdS particles with highest spin. Moreover, when h ≫ h̄ the lightest particle of maximal

spin determines Γ, since in this limit the propagator Π⊥ ∼ (h/h̄)1−∆. In theories with a

gravitational description, this particle is the graviton. This yields a universal prediction for

CFT’s with AdS duals in the gravity limit

2Γ(h, h̄) ≃ −16Ghh̄ Π⊥(h/h̄)
(

h ∼ h̄ → ∞ , h ≫ h̄ , ∆ = d
)

, (4.19)

where Π⊥ is the Euclidean scalar propagator in Hd−1 with mass squared d − 1.

Recall [2] that the impact parameter distance r is given by r = ℓ ln(h/h̄). Keeping

in mind the canonical example of the duality between strings on AdS5 × S5 and N = 4

SYM theory, we expect (4.19) to be valid for large r ≫ ℓ. Corrections to (4.19), due to

massive KK modes of the graviton, will start to be relevant at r ∼ ℓ. These corrections are

computable with an extension of the methods of this paper, which includes the sphere S5

in the transverse space. More complex, as in flat space, are the corrections due to string

effects [17, 18]. As in flat space, particles of all spins are exchanged, resulting in an effective

reggeon interaction of spin approximately 2 for large string tension. As recalled in [18], in

flat space the leading corrections to the pure gravity result occur due to tidal forces which

excite internal modes of the scattering strings. These effects start to be relevant at impact

parameters of the order of ℓPlank (Eℓs)
2/(d−1), where ℓPlank is Planck length in the (d + 1)-

dimensional spacetime, and where E is the energy of the process. Translating into AdS5

variables, we then expect tidal string excitations to play a role at r . G1/3ℓ 1/3ℓ
2/3
s (hh̄)1/3,

i.e. at ln(h/h̄) . (hh̄)1/3N−2/3λ−1/6, where λ = (ℓ/ℓs)
4 is the ’t Hooft coupling of the YM

theory. We shall discuss these effects extensively in a forthcoming publication [10].

5. Future work

In this paper we have derived the eikonal approximation for high energy interactions in

Anti-de Sitter spacetime. We have been working uniquely in the supergravity approxima-

tion, but we plan to extend these results by including string effects [10]. Discussing, for

concreteness, the duality between strings on AdS5 × S5 and N = 4 SYM theory, we shall

address the following issues

• At large ’t Hooft coupling λ = (ℓ/ℓs)
4, the leading correction to graviton exchange

will come from the contributions of the leading Regge trajectory. The effective spin

j of the exchanged particle will now depend on the transverse momentum transfer.

This requires an extension of Regge theory to conformal field theories which is quite

natural in our formalism, with results which reproduce and extend those of [19].
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• At weak coupling λ, high energy interactions are dominated by Pomeron exchange.

Following the initial results of [19], we shall relate our formalism to that of BFKL [20 –

22], describing hard pomeron exchange at weak coupling, including the non-trivial

transverse dependence relevant at non-vanishing momentum transfer.

• The relation of phase shift and anomalous dimension suggests an extension of the

results of this paper to the weak coupling λ → 0 regime, following the ideas of Amati,

Ciafaloni and Veneziano [17] on high energy string scattering. The phase shift Γ will

become an operator acting on two-string states, which will include both an orbital

part as well as a contribution from the internal excitation of the two scattering strings.

A natural candidate for Γ will be a generalization, to double trace operators, of the

dilatation operator [23] which has played a crucial role in analyzing the spectrum of

single trace states in N = 4 SYM theory.
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A. General spin j interaction

We wish to extend to result G(w · w̄) = Π⊥(k, k̄), derived in section 3.3, to the case of

general j. To this end we use equation (3.10), contracting both sides with

(−2)j kα1 · · · kαj k̄β1 · · · k̄βj

and integrating against

∫ ∞

−∞
dudv̄ =

(2ω)2

(x0 · w)2(x̄0 · w̄)2

∫ ∞

−∞
dλdλ̄ .

Using the explicit form of the δ-function in the {u, v,w} coordinate system give in sec-

tion 3.3, the r.h.s. reduces to

2i (2ω)2j (1 + vū/4)2j−2

(x0 ·w)2j+2
δHd−1

(w, w̄) . (A.1)
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Next we consider the l.h.s. of (3.10). First we note that the non-vanishing components of

the covariant derivatives of k are given by

∇vkv = −ωu

2
, ∇vkχ = ∇χkv =

ω

χ
,

where we explicitly parametrize the metric on Hd−1 as in section 3.3. Using these facts,

together with the explicit form of the metric and with

¤AdSkα = −d · kα , ∇γkα ,∇γkβ =
χ2 − 1

χ2
kαkβ ,

we conclude, after a tedious but straightforward computation, that

(−2)j kα1 · · ·kαj k̄β1 · · · k̄βj
¤AdSΠ

α1,··· ,αj ,β1,··· ,βj

∆ =

= ¤AdSΠ
(j)
∆ + j

[

2
χ2 − 1

χ
∂χ + (d + j − 1) − j + 1

χ2

]

Π
(j)
∆ + ∂u(· · · )

=

[

¤Hd−1
+ 2(j + 1)

χ2 − 1

χ
∂χ + j(d + j − 1) − j(j + 1)

χ2

]

Π
(j)
∆ + ∂u(· · · ) ,

where we do not show the explicit terms of the form ∂u(· · · ) since they will vanish once

integrated along the two geodesics. Note that the terms in · · · contain also other compo-

nents of the spin–j propagator aside from Π
(j)
∆ . We conclude that (A.1) must be equated

to

−2i (2ω)2j
(

1+
vū

4

)2j−2
[

¤Hd−1
−(∆+j)(∆−d−j)+2(j+1)

χ2−1

χ
∂χ−

j(j+1)

χ2

]

G(w, w̄)

(χχ̄)j+1
.

Using the fact that

[¤Hd−1
, χ−1−j ] =

j + 1

χ1+j

(

−2
χ2 − 1

χ
∂χ + (j − d + 3) − j + 2

χ2

)

,

we deduce again that

[

¤Hd−1
+ 1 − d − ∆(∆ − d)

]

G(w · w̄) = −δ(w, w̄) .

and therefore the function G is given by Π⊥.

B. Some relevant Fourier transforms

Start by recalling the standard generalized Feynman propagator

1

πd

∫

Md

dp

(p2 ∓ iǫ)∆
e2ix·p = ± π− d

2 Γ
(

d
2 − ∆

)

Γ (∆)

i

(x2 ± iǫ)
d
2
−∆

.

We now wish to consider the Fourier transform of interest

f (x) =
1

πd

∫

Md

dp

(p2 − iǫp)
∆

e2ix·p
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We consider first the case x0 = −x ·x0 < 0. In this case f (x) vanishes since we can deform

the p0 contour in the upper complex plane Im p0 > 0. By Lorentz invariance, f (x) also

vanishes whenever x is spacelike, and f (x) is therefore supported only in the future Milne

wedge M, where it is proportional to |x|2∆−d. To find the constant of proportionality, we

note that, when x0 > 0 we may deform the p0 contours in the lower complex plane and

show that

f (x) =
1

πd

∫

Md

[

dp

(p2 + iǫ)∆
+

dp

(p2 − iǫ)∆

]

e2ix·p .
(

x0 > 0
)

We then deduce that

f (x) = −i
π− d

2 Γ
(

d
2 − ∆

)

Γ (∆)

(

i2∆ − i−2∆
)

|x|2∆−d

=
2π1− d

2

Γ (∆)Γ
(

1 + ∆ − d
2

) |x|2∆−d (x ∈ M)

and f (x) = 0 for x /∈ M, thus proving equation (4.17).
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